Roll No. ..... Total Pages: 04

## 7223

# M.Sc. II<sup>nd</sup> Semester EXAMINATION, 2018 MATHEMATICS

Paper - III

(Special Functions)

Time: Three Hours
Maximum Marks: 80

*PART – A (खण्ड – अ)* 

[*Marks*: 20]

Answer all questions (50 words each).

All questions carry equal marks.

सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

*PART - B (खण्ड - ब)* 

[Marks: 40]

Answer five questions (250 words each)selecting

one from each unit. All questions carry equal marks.

प्रत्येक इकाई से **एक-एक** प्रश्न चुनते हुए, कुल **पाँच** प्रश्न कीजिए।

प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

*PART - C (खण्ड − स)* 

[Marks: 20]

Answer any two questions (300 words each).

All questions carry equal marks.

कोई **दो** प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

[7223] Page 1 of 4

## PART - A

Q.1 (a) Define regular singular point of the equation

$$P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = 0$$

- (b) What do you mean by Frobenius Method?
- (c) Write the generating function of  $P_n(x)$ .
- (d) What is a Legendre's polynomial?
- (e) Write the associated Legendre equation.
- (f) Calculate the value of  $P_n(1)$  from generating function.
- (g) What is a Bessel Function?
- (h) From  $\int_0^x x^{n+1} J_n(x) dx = x^{n+1} J_{n+1}(x), n > -1$ deduce  $J_0'(x) = -J_1(x)$
- (i) Write the values of  $H_1(x) \& H_2(x)$ .
- (j) Define Orthogonal Polynomials.

# PART – B

## UNIT -I

Q.2 Solve Legendre's equation-

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$$
 at an ordinary point.

Q.3 If  $\gamma > \beta > 0$  and |x| < 1, then prove that-

$$2F_{l}\left(\alpha,\beta;\gamma;x\right)\frac{\boxed{\gamma}}{\boxed{\beta}\boxed{\gamma-\beta}} \quad \int_{0}^{l}t^{\beta-l}\left(l-t\right)^{\gamma-\beta-l}\,\left(1-t\;x\right)^{-\alpha}dt$$

#### UNIT -II

- Q.4 Establish Rodrigues formula for  $P_n(x)$ .
- Q.5 Prove that- $\int_{-1}^{1} P_{m}(x) P_{n}(x) dx = \begin{cases} 0 & \text{; if } m \neq n \\ \frac{2}{2n+1} & \text{if } m = n \end{cases}$

#### **UNIT -III**

Q.6 Prove that-

$$^{n}P_{n}(x)=xP'_{n}(x)-P'_{n-1}(x)$$

Q.7 Show that zeros of the Legendre Polynomials  $P_n(x)$  are all real and lies between -1 and 1.

#### UNIT -IV

Q.8 Show that-

$$xJ'_{n}(x) = nJ_{n}(x) - xJ_{n+1}(x)$$

Q.9 Establish-

$$2nJ_{n}(x) = x \left[ J_{n-1}(x) + J_{n+1}(x) \right]$$

### UNIT -V

Q.10 Prove that-

$$P_{n}(x) = \frac{2}{\ln \sqrt{\pi}} \int_{0}^{\infty} e^{-t^{2}} \cdot t^{n} H_{n}(xt) dt$$

Q.11 Show that-

$$\int_{0}^{\infty} e^{-x} L_{n}(x) L_{m}(x) dx = \delta_{mn}, \text{ where}$$

 $\delta_{_{mn}}$  is the kronecker delta.

# PART - C

Q.12 Solve Bessel's equation-

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - n^{2})y = 0$$
, when

m is not an integer (general solution).

- Q.13 Establish the following theorems for hypergeometric functions
  - (a) Gauss's Theorem
  - (b) Kummer's Theorem
- Q.14 Prove that-

$$\int_{-1}^{1} P_{m}^{k}(x) P_{1}^{k}(x) dx = (-1)^{k} \frac{|k+1|}{|1-k|} \left(\frac{2}{2l+1}\right) \delta_{lm},$$

where  $\delta_{\mbox{\tiny lm}}$  is the kronecker delta.

Q.15 If n is a positive integer, then prove that-

$$J_{n}(x) = \frac{1}{\pi} \int_{0}^{\pi} \cos (n\phi - x \sin \phi) d\phi$$

Also, show that this result holds for integer n.

Q.16 Establish the formula-

$$L_{n}(x) = \frac{e^{x}}{|\underline{n}|} \frac{d^{n}}{dx^{n}} (x^{n}e^{-x})$$

and obtain the values of  $L_n(n)$  for n=0,1,2 and 3.

\_\_\_\_\_