Roll No.

6221

M.SC. MATHEMATICS IST SEMESTER EXAMINATION, 2019 Paper – I ALGEBRA

Time: Three Hours Maximum Marks: 80

PART – A (खण्ड – अ) [Marks: 20]

Answer all questions (50 words each). All questions carry equal marks. सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

PART – B (खण्ड – ब) [Marks: 40]

Answer five questions (250 words each).

Selecting one from each unit. All questions carry equal marks.

प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।

प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

PART – C (खण्ड – स) [Marks: 20]

Answer any two questions (300 words each).

All questions carry equal marks. कोई **दो प्रश्न** कीजिए | प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो | सभी प्रश्नों के अंक समान हैं |

PART – A

- Q.1 (i) Define external direct product.
 - (ii) Explain commentator sub group.
 - (iii) Define composition series.
 - (iv) Let G be a group of order 15, then find the number of 3-sylow subgroup of G.
 - (v) Define abelian group with example.
 - (vi) Explain solvable group with example.
 - (vii) Define Projection.
 - (viii) Explain Annihilator and also write the formula for calculating its dimension.
 - (ix) Define Diagonalization of a linear operator.
 - (x) Define Quadratic forms.

<u> PART – B</u>

<u>UNIT –I</u>

Q.2 Let G be a group and G be the internal direct product of two of its subgroups H_1 and H_2 then H_1 and H_2 are normal subgroup of G and

$$\frac{G}{H_1} \cong H_2 \text{ and } \frac{G}{H_2} \cong H_{1.}$$

Page **2** of **4**

[6221]

Q.3 Let G['] be the commentator subgroup of a group G. Then G is abelian if and only if $G' = \{e\}$, e being the identity element of G.

<u>UNIT –II</u>

Q.4 State and prove Sylow's third theorem.

Q.5 Show that no group of order 108 is simple.

<u>UNIT –III</u>

Q.6 Prove that every nilpotent is solvable but converse is not true.

Q.7 A group G is solvable if and only if $G^{(R)} = (e)$ for some non-negative integer R.

UNIT –IV

- Q.8 Let E be a linear transformation, then E is a projection \Leftrightarrow (I E) is a projection.
- Q.9 If W_1 is T-invariant on V(F), then for every projection E on W_1 , we have ETE = TE and conversely.

<u>UNIT –V</u>

Q.10 If the field F of characteristic \neq 2, then every symmetric bilinear forms on V(F) is

uniquely determined by the corresponding quadratic form.

Q.11 A linear transformation A on a finite dimensional vector spaces is invertible if and only

if it is non-singular.

[6221]

PART – C

- Q.12 (a) State and prove Cauchy's theorem for finite abelian group.
 - (b) If G_1 and G_2 are groups, then the subsets $G_1 \times \{e_2\}$ and $\{e_1\} \times G_2$ are normal subgroups of $G_1 \times G_2$ and is isomorphic to G_1 and G_2 respectively.

Q.13 State and prove Jordan-Holder theorem for finite group.

- Q.14 State and prove Fundamental theorem for finite abelian groups.
- Q.15 Let W be a subspace of V(F), then dim $A(W) = \dim V \dim W$.
- Q.16 Let T be a linear operator on $R^{3}(R)$ which is represented in the standard ordered basis

by the matrix.

[-9	4	4]
-8	3	4
l–16	8	7]

Prove that T is diagonalizable.
