## 6221

## M.SC. MATHEMATICS I ${ }^{\text {ST }}$ SEMESTER EXAMINATION, 2019 Paper - I

## ALGEBRA

Time: Three Hours
Maximum Marks: 80
PART - A (खण्ड - अ)

Answer all questions (50 words each).
All questions carry equal marks.
सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART - B (खण्ड - ब)
[Marks: 40]
Answer five questions ( 250 words each).
Selecting one from each unit. All questions carry equal marks.
प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।
प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART-C (खण्ड - स)
[Marks: 20]
Answer any two questions ( 300 words each).
All questions carry equal marks.
कोई दो प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।

## PART - A

Q. 1 (i) Define external direct product.
(ii) Explain commentator sub group.
(iii) Define composition series.
(iv) Let G be a group of order 15, then find the number of 3-sylow subgroup of G .
(v) Define abelian group with example.
(vi) Explain solvable group with example.
(vii) Define Projection.
(viii) Explain Annihilator and also write the formula for calculating its dimension.
(ix) Define Diagonalization of a linear operator.
(x) Define Quadratic forms.

## PART - B

## UNIT -I

Q. 2 Let $G$ be a group and $G$ be the internal direct product of two of its subgroups $H_{1}$ and $H_{2}$ then $\mathrm{H}_{1}$ and $\mathrm{H}_{2}$ are normal subgroup of G and

$$
\frac{\mathrm{G}}{\mathrm{H}_{1}} \cong \mathrm{H}_{2} \text { and } \frac{\mathrm{G}}{\mathrm{H}_{2}} \cong \mathrm{H}_{1} .
$$

Q. 3 Let $G^{\prime}$ be the commentator subgroup of a group $G$. Then $G$ is abelian if and only if $G^{\prime}=\{e\}, e$ being the identity element of G.

## UNIT -II

Q. 4 State and prove Sylow's third theorem.
Q. 5 Show that no group of order 108 is simple.

## UNIT -III

Q. 6 Prove that every nilpotent is solvable but converse is not true.
Q. 7 A group $G$ is solvable if and only if $G^{(R)}=(e)$ for some non-negative integer $R$.

## UNIT -IV

Q. 8 Let E be a linear transformation, then E is a projection $\Leftrightarrow(\mathrm{I}-\mathrm{E})$ is a projection.
Q. 9 If $\mathrm{W}_{1}$ is T-invariant on $\mathrm{V}(\mathrm{F})$, then for every projection E on $\mathrm{W}_{1}$, we have $\mathrm{ETE}=\mathrm{TE}$ and conversely.

## UNIT -V

Q. 10 If the field $F$ of characteristic $\neq 2$, then every symmetric bilinear forms on $V(F)$ is uniquely determined by the corresponding quadratic form.
Q. 11 A linear transformation A on a finite dimensional vector spaces is invertible if and only if it is non-singular.

## PART - C

Q. 12 (a) State and prove Cauchy's theorem for finite abelian group.
(b) If $G_{1}$ and $G_{2}$ are groups, then the subsets $G_{1} \times\left\{e_{2}\right\}$ and $\left\{e_{1}\right\} \times G_{2}$ are normal subgroups of $G_{1} \times G_{2}$ and is isomorphic to $G_{1}$ and $G_{2}$ respectively.
Q. 13 State and prove Jordan-Holder theorem for finite group.
Q. 14 State and prove Fundamental theorem for finite abelian groups.
Q. 15 Let $W$ be a subspace of $V(F)$, then $\operatorname{dim} A(W)=\operatorname{dim} V-\operatorname{dim} W$.
Q. 16 Let $T$ be a linear operator on $R^{3}(R)$ which is represented in the standard ordered basis by the matrix.

$$
\left[\begin{array}{ccc}
-9 & 4 & 4 \\
-8 & 3 & 4 \\
-16 & 8 & 7
\end{array}\right]
$$

Prove that T is diagonalizable.

