Paper - II

REAL ANALYSIS

Time: Three Hours
Maximum Marks: 80
PART - A (खण्ड - अ)

Answer all questions (50 words each).
All questions carry equal marks.
सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।
PART - B (खण्ड - ब)
[Marks: 40]
Answer five questions (250 words each).
Selecting one from each unit. All questions carry equal marks.
प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।
प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART-C (खण्ड - स)
[Marks: 20]
Answer any two questions (300 words each).
All questions carry equal marks.
कोई दो प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।

PART - A

Q. 1 (i) If A is a singleton set then prove that $\mathrm{m}^{*}(\mathrm{~A})=0$
(ii) Define outer measure of any subset of R.
(iii) Define signed measure on a measurable space (X, B).
(iv) Define G_{δ} and F_{σ} sets.
(v) Show that constant function with measurable domain is measurable.
(vi) State 'almost everywhere' property of a measurable set.
(vii) Define step function with example.
(viii) Define uniform convergence of measurable function.
(ix) State bounded convergence theorem.
(x) Give an example of a bounded and measurable function which is not Reimann integrable but which is Lebesgue integrable.

PART - B
 UNIT -I

Q. 2 If E_{1} and E_{2} are disjoint measurable sets then prove that -

$$
\mathrm{m}\left(\bigcup_{\mathrm{K}=1}^{\infty} \mathrm{E}_{\mathrm{K}}\right)=\sum_{\mathrm{K}=1}^{\infty} \mathrm{m}\left(\mathrm{E}_{\mathrm{K}}\right)
$$

Q. 3 Let A be any subset of R, then for every $x \in R$, Prove that $m^{*}(A+x)=m *(A)$.

UNIT -II

Q. 4 Prove that the family M of all measurable sets is a σ - Algebra.
Q. 5 For a set E, prove that the following statement are equivalent
(i) E is measurable
(ii) Given $\varepsilon>0, \exists$ an open set $\mathrm{O} \supset \mathrm{E}$ such that $\mathrm{m} *\left(\frac{o}{E}\right)<\epsilon$
(iii) There is a G_{δ} set $\mathrm{G} \supset \mathrm{E}$ such that $\mathrm{m}^{*}\left(\frac{G}{E}\right)=0$

UNIT -III

Q. 6 If f is a measurable function defined on a measurable set E , then prove that the set $\{x: f(x)=\alpha\}$ is measurable for such extended real number α.
Q. 7 Prove that a continuous function defined on measureable set is measurable. Is the converse true or not? Justify.

UNIT -IV

Q. 8 If a sequence $\{\mathrm{fn}\}$ converges in measure to a function f , then prove that limit function f is unique almost everywhere.
Q. 9 If the sequence of function $\{f n\}$ converges in measure of two functions $f(x)$ and $g(x)$, then these limit functions are equivalent.

UNIT -V

Q. 10 Let f and g be bounded measurable functions defined on a set E of finite measure. Let $\mathrm{f}=\mathrm{g}$ almost everywhere then prove that:
$\int_{\epsilon} \mathrm{f}=\int_{\epsilon} \mathrm{g} \quad$ Is converse true? Verify.
Q. 11 If f is a measurable function on a measurable set E and if $a \leq f(x) \geq b$ then prove

$$
\operatorname{a.m}(\mathrm{E}) \leq \int_{\epsilon} \mathrm{f}(\mathrm{x}) \mathrm{dx} \leq \mathrm{b} \cdot \mathrm{~m}(\mathrm{E})
$$

PART - C

Q. 12 If I is any interval then prove that

$$
\mathrm{m}^{*}(\mathrm{I})=\ell(\mathrm{I})
$$

Q. 13 Prove that there exist a non- measurable set in the interval $(0,1)$.
Q. 14 If a sequence $\{\mathrm{fn}\}$ of measurable functions defined on a measurable set E converge point wise to a function f on E then prove that f is measurable.
Q. 15 Let E be a measurable set with $\mathrm{m}(\mathrm{E})<\infty$ and $\{\mathrm{fn}\}$ be a sequence of measurable function which converge to f a.e on E. then given $r>0$ there exists a set $A \subset E$ with $m(A)<r$ such that the sequence $\{f n\}$ converges to f uniformly on $\frac{E}{A}$.
Q. 16 State and prove Lebesgue convergence theorem.

