Total Pages: 03

Roll No.

6222

M.Sc. MATHEMATICS Ist SEMESTER EXAMINATION, 2019 Paper – II REAL ANALYSIS

Time: Three Hours Maximum Marks: 80

PART – A (खण्ड – अ) [Marks: 20]

Answer all questions (50 words each). All questions carry equal marks. सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

PART – B (खण्ड – ब) [Marks: 40]

Answer five questions (250 words each).

Selecting one from each unit. All questions carry equal marks.

प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।

प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

PART – C (खण्ड – स) [Marks: 20]

Answer any two questions (300 words each).

All questions carry equal marks. कोई **दो प्रश्न** कीजिए | प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो | सभी प्रश्नों के अंक समान हैं |

PART – A

- Q.1 (i) If A is a singleton set then prove that $m^*(A) = 0$
 - (ii) Define outer measure of any subset of R.
 - (iii) Define signed measure on a measurable space (X,B).
 - (iv) Define G_{δ} and F_{σ} sets.
 - (v) Show that constant function with measurable domain is measurable.
 - (vi) State 'almost everywhere' property of a measurable set.
 - (vii) Define step function with example.
 - (viii) Define uniform convergence of measurable function.
 - (ix) State bounded convergence theorem.
 - (x) Give an example of a bounded and measurable function which is not Reimann integrable but which is Lebesgue integrable.

<u> PART – B</u>

<u>UNIT –I</u>

Q.2 If E_1 and E_2 are disjoint measurable sets then prove that –

$$m\left(\bigcup_{K=1}^{\infty} E_{K}\right) = \sum_{K=1}^{\infty} m(E_{K})$$

Q.3 Let A be any subset of R, then for every $x \in R$, Prove that $m^*(A+x) = m^*(A)$.

<u>UNIT –II</u>

- Q.4 Prove that the family M of all measurable sets is a σ Algebra.
- Q.5 For a set E, prove that the following statement are equivalent
 - (i) E is measurable
 - (ii) Given $\varepsilon > 0$, \exists an open set $O \supset E$ such that $m^*\left(\frac{o}{E}\right) < \epsilon$
 - (iii) There is a G_{δ} set $G \supset E$ such that $m^*\left(\frac{G}{E}\right) = 0$

[6222]

<u>UNIT –III</u>

- Q.6 If f is a measurable function defined on a measurable set E, then prove that the set $\{x : f(x) = \alpha\}$ is measurable for such extended real number α .
- Q.7 Prove that a continuous function defined on measureable set is measurable. Is the converse true or not? Justify.

<u>UNIT –IV</u>

- Q.8 If a sequence {fn} converges in measure to a function f, then prove that limit function f is unique almost everywhere.
- Q.9 If the sequence of function {fn} converges in measure of two functions f(x) and g(x), then these limit functions are equivalent.

<u>UNIT –V</u>

Q.10 Let f and g be bounded measurable functions defined on a set E of finite measure. Let f = g almost everywhere then prove that:

 $\int_{e} f = \int_{e} g$ Is converse true? Verify.

Q.11 If f is a measurable function on a measurable set E and if $a \le f(x) \ge b$ then prove

a.m (E) $\leq \int_{E} f(x) dx \leq b.m$ (E)

PART – C

Q.12 If I is any interval then prove that

$$\mathsf{m}^*(\mathsf{I}) = \ell(\mathsf{I})$$

- Q.13 Prove that there exist a non-measurable set in the interval (0, 1).
- Q.14 If a sequence {fn} of measurable functions defined on a measurable set E converge point wise to a function f on E then prove that f is measurable.
- Q.15 Let E be a measurable set with m(E) < ∞ and {fn} be a sequence of measurable function which converge to f a.e on E. then given r > 0 there exists a set A \subset E with m(A)<r such that the sequence {fn} converges to f uniformly on $\frac{E}{A}$.
- Q.16 State and prove Lebesgue convergence theorem.

[6222]