6224

M.Sc. MATHEMATICS I ${ }^{\text {ST }}$ SEMESTER EXAMINATION, 2019 Paper - IV MECHANICS - I
 Time: Three Hours
 Maximum Marks: 80

PART - A (खण्ड - अ)

Answer all questions (50 words each).
All questions carry equal marks.
सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART - B (खण्ड - ब)
[Marks: 40]
Answer five questions (250 words each).
Selecting one from each unit. All questions carry equal marks.
प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।
प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART - C (खण्ड - स)

Answer any two questions (300 words each).
All questions carry equal marks.
कोई दो प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।

PART - A

Q. 1 (i) What is difference between Lagrange's and Euler's methods of motion?
(ii) Define boundary surface.
(iii) Write equation of motion of the fluid along r direction.
(iv) What is principle of permanence of irrotational motion?
(v) Define central orbit.
(vi) Write Kepler's third law of motion.
(vii) Why is a second plate P_{2} mounted parallel to P_{1} in Michelson and Morley experiment?
(viii) What is Lorentz- Fitzgerald contraction hypothesis?
(ix) Write formula between energy and momentum.
(x) What is difference between Newtonian and Hamiltonian formalisation.

PART - B
 UNIT -I

Q. 2 Obtain equation of continuity by Lagrange's approach.
Q. 3 Show that $\frac{x^{2}}{a^{2}} e^{t}+\frac{y^{2}}{b^{2}} \operatorname{cost}+\frac{z^{2}}{c^{2}} e^{-t}$ sect $=1$ is a possible form for the boundary surface of a liquid.

UNIT -II

Q. 4 State and prove Bernoulli's theorem.
Q. 5 Air obeying Boyle's law, is in motion in a uniform tube of small section. Prove that if ρ be the density and v the velocity at a distance x from a fixed point at a time t, then$\frac{\partial^{2} \rho}{\partial \mathrm{t}^{2}}=\frac{\partial^{2}}{\partial \mathrm{x}^{2}}\left[\left(v^{2}+\mathrm{k}\right) \rho\right]$.

UNIT -III

Q. 6 A particle moves in an ellipse under a force which is always directed towards its focus, find the law of force and velocity at any point of its path.
Q. 7 A particle describes an ellipse as a central orbit about the focus, prove that the velocity at the end of the minor axis is a geometric mean between the velocities at the end of any diameter.

UNIT -IV

Q. 8 Explain emission theory.
Q. 9 Obtain relativistic composition of parallel velocity under Lorentz transformations.

UNIT -V

Q. 10 Obtain relativistic transformation formula for mass.
Q. 11 Obtain relativistic Hamiltonian.

PART - C

Q. 12 Show that if the velocity potential of an irrotational fluid motion is equal to $A\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} z \tan ^{-1} \frac{y}{x}$, the lines of flow will be on the series of surfaces$\left(x^{2}+y^{2}+z^{2}\right)=c^{2 / 3}\left(x^{2}+y^{2}\right)^{2 / 3}$.
Q. 13 An infinite mass of homogeneous incompressible fluid is at rest subject to a uniform pressure π and contains a spherical cavity of radius a, filled with gas at a pressure $m \pi$, prove that if the inertia of gas be neglected and Boyle's law be supposed to hold throughout the ensuing motion, the radius of the sphere will oscillate between the values a and na, where n is determined by the equation $1+3 m \log n-n^{3}=0$.
Q. 14 P particle under a central acceleration $\mu \mu^{3}\left(3+2 a^{2} \mu^{2}\right)$, is projected from a distance a at an angle $\tan ^{-1} \frac{1}{2}$ with it with a velocity equal to that in a circle at the same distance; prove that the path is $r=a \tan \theta$.
Q. 15 Obtain relativistic transformation formula for velocities using Lorentz transformation equations.
Q. 16 An electron A moving with velocity μ_{1} relative to an inertial frame in which another election B is at rest, strikes the election B. If after collision their directions of motion make angles θ and ϕ with the original direction of motion of A, Prove that$\tan \theta \tan \phi=\frac{2}{r_{1}+1}$ with $r_{1}^{2}\left(1-\frac{\mu_{1}^{2}}{\mathrm{c}^{2}}\right)=1$

