Roll No. Total Pages: 04

9221

M.Sc. IVth SEMESTER EXAMINATION, 2019 MATHEMATICS

Paper - I

Core Course-13 Functional Analysis

Time: Three Hours Maximum Marks: 80

PART – A (खण्ड – अ)

[Marks: 20]

Answer all questions (50 words each).

All questions carry equal marks.

सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

PART - B (खण्ड - ब)

[Marks: 40]

Answer five questions (250 words each),

selecting one from each unit. All questions carry equal marks.

प्रत्येक इकाई से **एक-एक** प्रश्न चुनते हुए, कुल **पाँच** प्रश्न कीजिए।

प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

PART - C (खण्ड - स)

[Marks: 20]

Answer any two questions (300 words each).

All questions carry equal marks.

कोई **दो प्रश्न** कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

PART - A

- Q.1 (a) Define the norm Linear spaces.
 - (b) State the Riesz-lemma.
 - (c) Define the Banach spaces.
 - (d) State the Hahn- Banach theorem.
 - (e) Define the Inner product space.
 - (f) If x and y are any two vectors in a Hilbert space, then $\|x + y\|^2 + \|x y\|^2 = 2 \|x\|^2 + 2 \|y\|^2$
 - (g) Define the complete orthonormal set.
 - (h) Define the conjugate space.
 - (i) Define the Self-adjoint operator.
 - (j) Define the unitary operator.

PART - B

UNIT -I

- Q.2 State and prove the Minkowski inequality.
- Q.3 Let N and N' be Normed linear spaces over the same scalar field and let T be a linear transformation of N into N'. Then T is bounded iff it is continuous.

UNIT -II

- Q.4 State and prove the open mapping theorem.
- Q.5 State and prove the closed graph theorem.

[9221]

UNIT -III

- Q.6 If x and y are any two vectors in a Hilbert space H, then $|(x, y)| \le ||x|| ||y||$.
- Q.7 Let S be a non empty subset of a Hilbert space H. Then S^{\perp} is a closed linear subspace of H.

UNIT -IV

- Q.8 Show that in a Hilbert space H an orthonormal set S is complete if and only if $x \perp s \Rightarrow x = 0$.
- Q.9 Show that the mapping $\psi : H \to H^*$ define by $\psi (y) = fy$ where $fy (x) = (x, y) \ \forall \ x \in H$ is one- one, onto but not linear and an isometry.

<u>UNIT -V</u>

- Q.10 Show that -
 - (i) $\| \mathbf{T}^* \mathbf{T} \| = \| \mathbf{T} \|^2$
 - (ii) $(T_1 T_2)^* = T_2^* T_1^*$
- Q.11 If N is a Normal operator on a Hilbert space H, then $|| N^2 || = || N ||^2$

PART - C

Q.12 Show that the linear space R^n and C^n of all n- tuples $x = (x_1, x_2, \dots, x_n)$ of real and complex numbers are Banach spaces under the norm.

$$\parallel x \parallel = \left(\sum_{i=1}^{n} \left| xi \right|^{2} \right)^{1/2}$$

Q.13 State and prove the uniform bounded theorem.

[9221]

- Q.14 If M is a closed linear subspace of a Hilbert space H, then $H = M \oplus M^{\perp}$.
- Q.15 If {ei} is an orthonormal set in a Hilbert space H and if x, y are arbitrary vectors in H, then, $\sum |(x, ei)(\overline{y, ei})| \le ||x|| ||y||$.
- Q.16 An operator T on a Hilbert space H is unitary iff it is an isometric isomorphism of H onto itself.

[9221] Page **4** of **4**