9223

M.Sc. IV $^{\text {th }}$ SEMESTER EXAMINATION, 2019 MATHEMATICS Paper - III
DSE - 3 \{Discrete Mathematics\}
Time: Three Hours
Maximum Marks: 80
PART - A (खण्ड - अ)
[Marks: 20]
Answer all questions ($\mathbf{5 0}$ words each).
All questions carry equal marks.
सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।
PART - B (खण्ड - ब)
[Marks: 40]
Answer five questions (250 words each),
selecting one from each unit. All questions carry equal marks.
प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।
प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART-C (खण्ड - स)
[Marks: 20]
Answer any two questions ($\mathbf{3 0 0}$ words each).
All questions carry equal marks.
कोई दो प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।

PART - A

Q. 1 Answer all questions -
(i) Statement of Handshaking lemma.
(ii) Define path, circuit with example.
(iii) A plane simple graph has 30 vertices, each of degree 3. In how many regions can this graph be partitioned?
(iv) Define cut-sets.
(v) What is post order tree traversal?
(vi) Define strong connectivity of a graph.
(vii) Define FSM.
(viii) Define Acceptor.
(ix) Define context sensitive grammar.
(x) Write statement of Pumping Lemma.

PART - B
 UNIT - I

Q. 2 (a) Draw the following graph -

$$
\begin{aligned}
& \mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\} \\
& \mathrm{E}=\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{4}\right),\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{v}_{2}, \mathrm{v}_{4}\right),\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right)\right\}
\end{aligned}
$$

then verify first theorem of graph theory.
(b) Define Induced sub-graph, Pseudo graph, Edge connectivity of a graph.
Q. 3 (a) Define Planar graph. Show that complete graph K_{5} is not a planar graph.
(b) Prove - The maximum number of edges in a simple graph with n vertices is $\frac{1}{2} n(n-1)$.

UNIT - II

Q. 4 Define Complete Bipartite graph with suitable example. Show that if $G=(V, E)$ is a Bipartite graph with n - vertices, then the total number of edges in G can't exceed $\frac{1}{4} n^{2}$.
Q. 5 (a) Prove - Let G be an acyclic graph with n - vertices and k connected components i.e. $\omega(G)=k$, then G has $(n-k)$ edges.
(b) Write a note on Kruskal's Algorithm.

UNIT - III

Q. 6 Prove - For any connected planar graph -$v-e+r=2$, where v, e and r are the number of vertices, edges \& regions of the graph respectively.
Q. 7 Define Directed trees. Explain search trees by using your own example.

UNIT - IV

Q. 8 What are equivalent machines? Minimize the FSM M given by the following state table -

State	Input		Output
	i_{1}	i_{2}	
$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$	$\mathrm{~s}_{2}$	0
$\mathrm{~s}_{1}$	$\mathrm{~s}_{5}$	$\mathrm{~s}_{3}$	0
$\mathrm{~s}_{2}$	$\mathrm{~s}_{6}$	$\mathrm{~s}_{4}$	0
$\mathrm{~s}_{3}$	$\mathrm{~s}_{7}$	$\mathrm{~s}_{2}$	0
$\mathrm{~s}_{4}$	$\mathrm{~s}_{1}$	$\mathrm{~s}_{5}$	1
$\mathrm{~s}_{5}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{7}$	0
$\mathrm{~s}_{6}$	$\mathrm{~s}_{4}$	$\mathrm{~s}_{1}$	0
$\mathrm{~s}_{7}$	$\mathrm{~s}_{1}$	$\mathrm{~s}_{2}$	1

Q. 9 Draw the transition diagram of FSM which is represented by following state table. Also find the output words corresponding to input words -
(i) $\mathrm{w}=10111$
(ii) $\mathrm{v}=10011011$

State	Transition function (f)		Output function (g)	
	0	1	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{1}$	0	1
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$	0	1
$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{1}$	0	1
$\mathrm{~s}_{3}$	$\mathrm{~s}_{1}$	$\mathrm{~s}_{3}$	0	0

UNIT -V

Q. 10 Construct a grammar for the following language -
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{i}} \mid \mathrm{i}, \mathrm{j} \geq 1, \mathrm{i} \neq \mathrm{j}\right\}$
Q. 11 Define Regular Expressions -

Find the language generated by the grammar
$\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ where $\mathrm{V}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$ and $\mathrm{T}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and production set $\mathrm{P}=\{\mathrm{S} \rightarrow \mathrm{aSA}, \mathrm{S} \rightarrow \mathrm{aB}, \mathrm{A} \rightarrow \mathrm{b}, \mathrm{B} \rightarrow \mathrm{c}\}$.

PART - C

Q. 12 (a) Prove - If a graph (connected or disconnected) has exactly two vertices of odd degree, there must be a path joining these two vertices.
(b) Prove - A simple graph (i.e. a graph without parallel edges or self-loops) with n vertices and k components can have at most $\frac{1}{2}(\mathrm{n}-\mathrm{k})(\mathrm{n}-\mathrm{k}+1)$ edges.
Q. 13 Is the given Petersen's graph planar? Explain your answer.

Q. 14 Define Eulerian path, Eulerian circuit.

Prove - A given connected graph G is an Euler graph iff all vertices of G are of even degrees.
Q. 15 Construct a Finite Automaton M with $\mathrm{I}=\left\{\mathrm{i}_{1}, \mathrm{i}_{2}\right\}$ which will only accepts those strings in i_{1} and i_{2}. Such that the number of i_{1} 's is even and the number of i_{2} 's is divisible by 3 .
Q. 16 State and prove Pumping Lemma. Show that the following language is not regular

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{P}} \mid \mathrm{P} \text { is prime }\right\}
$$

