Roll No.

Total Pages: 04

9223

M.Sc. IVth SEMESTER EXAMINATION, 2019 MATHEMATICS Paper – III DSE – 3 {Discrete Mathematics}

Time: Three Hours Maximum Marks: 80

PART – A (खण्ड – अ) [Marks: 20]

Answer all questions (**50** words each). All questions carry equal marks. सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर **50** शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

PART – B (खण्ड – ब) [Marks: 40]

Answer *five* questions (250 words each),

selecting one from each unit. All questions carry equal marks.

प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।

प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

PART – C (खण्ड – स) [Marks: 20]

Answer any two questions (300 words each).

All questions carry equal marks. कोई **दो प्रश्न** कीजिए | प्रत्येक प्रश्न का उत्तर **300** शब्दों से अधिक न हो | सभी प्रश्नों के अंक समान हैं |

PART – A

- Q.1 Answer all questions -
 - (i) Statement of Handshaking lemma.
 - (ii) Define path, circuit with example.
 - (iii) A plane simple graph has 30 vertices, each of degree 3. In how many regions can this graph be partitioned?
 - (iv) Define cut-sets.
 - (v) What is post order tree traversal?
 - (vi) Define strong connectivity of a graph.
 - (vii) Define FSM.
 - (viii) Define Acceptor.
 - (ix) Define context sensitive grammar.
 - (x) Write statement of Pumping Lemma.

<u>PART – B</u> <u>UNIT – I</u>

Q.2 (a) Draw the following graph –

 $V = \{v_1, v_2, v_3, v_4\}$ E = {(v₁, v₂), (v₁, v₄), (v₂, v₃), (v₂, v₄), (v₃, v₄)}

then verify first theorem of graph theory.

- (b) Define Induced sub-graph, Pseudo graph, Edge connectivity of a graph.
- Q.3 (a) Define Planar graph. Show that complete graph K_5 is not a planar graph.
 - (b) Prove The maximum number of edges in a simple graph with n vertices is $\frac{1}{2}$ n (n-1).

<u>UNIT – II</u>

- Q.4 Define Complete Bipartite graph with suitable example. Show that if G = (V, E) is a Bipartite graph with n vertices, then the total number of edges in G can't exceed $\frac{1}{4}$ n².
- Q.5 (a) Prove Let G be an acyclic graph with n vertices and k connected components i.e. $\omega(G) = k$, then G has (n-k) edges.
 - (b) Write a note on Kruskal's Algorithm.

<u>UNIT – III</u>

Q.6 Prove – For any connected planar graph –

v - e + r = 2, where v, e and r are the number of vertices, edges & regions of the graph respectively.

[9223]

Q.7 Define Directed trees. Explain search trees by using your own example.

<u>UNIT – IV</u>

Q.8 What are equivalent machines? Minimize the FSM M given by the following state table –

State	Input		Output
	\mathbf{i}_1	i ₂	Output
S ₀	S ₁	S ₂	0
S 1	S 5	S 3	0
S 2	S 6	S 4	0
S 3	S 7	S 2	0
S 4	S ₁	S 5	1
S 5	S 3	S 7	0
S 6	S 4	S ₁	0
S 7	S 1	S ₂	1

- Q.9 Draw the transition diagram of FSM which is represented by following state table. Also find the output words corresponding to input words
 - (i) w = 10111
 - (ii) v = 10011011

State	Transition function (f)		Output fur	nction (g)
	0	1	0	1
S ₀	\$3	S ₁	0	1
\$ ₁	S 0	S ₁	0	1
\$ ₂	83	S ₁	0	1
\$3	S 1	\$3	0	0

UNIT –V

Q.10 Construct a grammar for the following language -

 $L = \{a^{i} b^{i} | i, j \ge 1, i \neq j\}$

Q.11 Define Regular Expressions -

Find the language generated by the grammar

G = (V, T, S, P) where V = {S, A, B} and T = {a, b, c} and production set P = {S \rightarrow aSA, S \rightarrow aB, A \rightarrow b, B \rightarrow c}.

<u>PART – C</u>

- Q.12 (a) Prove If a graph (connected or disconnected) has exactly two vertices of odd degree, there must be a path joining these two vertices.
 - (b) Prove A simple graph (i.e. a graph without parallel edges or self-loops) with n vertices and k components can have at most $\frac{1}{2}$ (n k) (n k + 1) edges.
- Q.13 Is the given Petersen's graph planar? Explain your answer.

Q.14 Define Eulerian path, Eulerian circuit.

Prove – A given connected graph G is an Euler graph iff all vertices of G are of even degrees.

- Q.15 Construct a Finite Automaton M with $I = \{i_1, i_2\}$ which will only accepts those strings in i_1 and i_2 . Such that the number of i_1 's is even and the number of i_2 's is divisible by 3.
- Q.16 State and prove Pumping Lemma. Show that the following language is not regular

 $L = \{a^P | P \text{ is prime}\}$

[9223]