9224

M.Sc. IV $^{\text {th }}$ SEMESTER EXAMINATION, 2019 MATHEMATICS
 Paper - IVth
 DSE - 04 [Optimization Techniques]
 Time: Three Hours
 Maximum Marks: 80

PART - A (खण्ड - अ)
[Marks: 20]
Answer all questions (50 words each).
All questions carry equal marks.
सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART - B (खण्ड - ब) [Marks: 40]

Answer five questions ($\mathbf{2 5 0}$ words each),
selecting one from each unit. All questions carry equal marks.
प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।
प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART-C (खण्ड - स)
[Marks: 20]
Answer any two questions ($\mathbf{3 0 0}$ words each).
All questions carry equal marks.
कोई दो प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

PART - A

Q. 1 Answer all questions -
(i) Define unconstrained problems of maxima and minima.
(ii) Obtain the set of necessary conditions for the non-linear programming problem:

Maximize $Z=x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}$
Subject to the constraints:
$\mathrm{x}_{1}+\mathrm{x}_{2}+3 \mathrm{x}_{3}=2,5 \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}=5$ and $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$
(iii) Explain Saddle Point Problems.
(iv) Write Kuhn-Tucker necessary and sufficient conditions.
(v) What is quadratic programming problem?
(vi) Use Beale's method for solving the quadratic programming problem (only one step)-
Max. $Z=4 x_{1}+6 x_{2}-2 x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}$
Subject to : $\mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 2$ and $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
(vii) Explain a dynamic programming problem.
(viii) State a sufficient condition for a two-stage optimization problem to be solved by dynamic programming.
(ix) Define maximum flow algorithm.
(x) Define Shortest Route Problem.

PART - B

UNIT - I

Q. 2 Find the maximum or minimum of the function -

$$
\mathrm{f}(\mathrm{x})=\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}-4 \mathrm{x}_{1}-8 \mathrm{x}_{2}-12 \mathrm{x}_{3}+56
$$

Q. 3 Obtain the necessary and sufficient conditions for the optimum solution of the following non-linear programming problems:
Min. $Z=f\left(x_{1}, x_{2}\right)=3 \mathrm{e}^{2 \mathrm{x}_{1}+1}+2 \mathrm{e}^{\mathrm{x}_{2}+5}$
Subject to the constraints: $x_{1}+x_{2}=7$ and $x_{1}, x_{2} \geq 0$

UNIT - II

Q. 4 Write the Kuhn-Tucker conditions for the following minimization problem:

Minimize. $f(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
Subject to: $\mathrm{g}_{1}(\mathrm{x})=2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 5$

$$
\begin{aligned}
& \mathrm{g}_{2}(\mathrm{x})=\mathrm{x}_{1}+\mathrm{x}_{3} \leq 2 \\
& \mathrm{~g}_{3}(\mathrm{x})=-\mathrm{x}_{1} \leq-1 \\
& \mathrm{~g}_{4}(\mathrm{x})=-\mathrm{x}_{2} \leq-2 \\
& \mathrm{~g}_{5}(\mathrm{x})=-\mathrm{x}_{3} \leq 0
\end{aligned}
$$

Q. 5 Let $x \in R^{n}, u \in R^{m}$ and f be a function of x and u for a point (x^{*}, u^{*}) to be a non-negative saddle point of $f(x, u)$ it is necessary that -

$$
\begin{equation*}
\mathrm{f}_{\mathrm{x}^{*}} \leq 0, \mathrm{f}_{\mathrm{x}}^{\mathrm{T}} \mathrm{x}^{*}=0, \text { (ii) } \mathrm{f}_{\mathrm{u}} \geq 0, \mathrm{f}_{\mathrm{u}}^{\mathrm{T}} \mathrm{u}^{*}=0 \text {, for } \mathrm{x}^{*} \geq 0, \mathrm{u}^{*} \geq 0 \tag{i}
\end{equation*}
$$

UNIT - III

Q. 6 Solve the quadratic programming problem by Wolfe's method:
$\operatorname{Max} . Z=2 x_{1}+x_{2}-x_{1}^{2}$,
Subject to : $\quad 2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 6,2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 4$ and $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$.
Q. 7 Solve the quadratic programming problem by Beale's method:

Max. $Z=\quad 10 x_{1}+25 x_{2}-10 x_{1}^{2}-x_{2}^{2}-4 x_{1} x_{2}$
Subject to : $\quad x_{1}+2 x_{2}+x_{3}=10, x_{1}+x_{2}+x_{3}=9$.
and $\quad x_{1}, x_{2}, x_{3} \geq 0$.

UNIT - IV

Q. 8 Use dynamic programming to show that :
$\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Pi} \log \mathrm{Pi}$ Subject to $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Pi}=1, \mathrm{Pi} \geq 0$ is minimum when $\mathrm{P}_{1}=\mathrm{P}_{2}=\ldots \ldots=\mathrm{P}_{\mathrm{n}}=1 / \mathrm{n}$.
Q. 9 Formulate the following problem as a multi stage problem and then solve it :

Min. $Z=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}$
Subject to $\mathrm{x}_{1} . \mathrm{x}_{2} . \mathrm{x}_{3} \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}=\mathrm{b}$
and
$\mathrm{x}_{1}, \mathrm{x}_{2} \ldots, \mathrm{x}_{\mathrm{n}} \geq 0$

UNIT -V

Q. 10 Draw the network (N, L) where N and L are given by $\mathrm{N}=\{1,2,3,4,5,6\}$ and $\mathrm{L}=\{1-2,1-5,2-3,2-4,3-5,3-4,4-3,4-6,5-2,5-6\}$ construct a spanning tree for the network.
Q. 11 Consider the transportation problem:

Source	Destination			Supply
	1	2	3	
1	6	7	4	40
2	5	8	6	60
Demand	30	40	30	

Formulate the network representation of this problem as a minimum cost flow problem.

PART - C

Q. 12 A necessary condition for a continuous function $f(x)$ with continuous first and second partial derivatives to have an extreme point at x_{0} is that each first partial derivative of $\mathrm{f}(\mathrm{x})$. Evaluated at x_{0} vanish, that is $\nabla \mathrm{f}\left(\mathrm{x}_{0}\right)=0$.
Q. 13 State and proof Kuhn - Tucker necessary conditions.
Q. 14 State and proof Wolfe's method for DPP.
Q. 15 Find the shortest path from vertex A to vertex B along axes joining various vertices lying between A and B . Length of each path is given.

$$
\mathrm{J}=0 \quad \mathrm{~J}=1 \quad \mathrm{~J}=2 \quad \mathrm{~J}=3 \quad \mathrm{~J}=4
$$

Q. 16 Use Dijkstra's algorithm to determine a shortest path from A to C for the following network.

