7221
M.Sc. II $^{\text {nd }}$ SEMESTER EXAMINATION, 2019 MATHEMATICS
Paper - I
Algebra - II
Time: Three Hours
Maximum Marks: 80

PART - A (खण्ड - अ)
[Marks: 20]
Answer all questions (50 words each).
All questions carry equal marks.
सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART - B (खण्ड - ब)

Answer five questions ($\mathbf{2 5 0}$ words each),
selecting one from each unit. All questions carry equal marks.
प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।
प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART - C (खण्ड — स)
[Marks: 20]
Answer any two questions (300 words each).
All questions carry equal marks.
कोई दो प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

PART - A

Q. 1 (i) Define prime and irreducible elements.
(ii) Prove that the polynomial $\mathrm{x}^{2}+\mathrm{x}+1 \in \mathrm{z}_{2}(\mathrm{x})$ is irreducible.
(iii) Define Module.
(iv) If A and B are sub modules of an R - module M , then $\mathrm{A}+\mathrm{B}$ is also module of M .
(v) Define Finitely Generated Modules.
(vi) Explain Noetherian Module.
(vii) Let F be a field with 5^{12} elements. Then find the total number of proper subfield of F.
(viii) Define normal field extension.
(ix) Explain automorphism of a field.
(x) Define solvability by radicals.

PART - B

UNIT - I

Q. 2 Show that the ring Z of integers is a Euclidean ring.
Q. 3 If a and b are any non-zero elements of a Euclidean ring R, then-
(i) b is a unit of $R \Rightarrow d(a b)=d(a)$
(ii) b is not a unit of $R \Rightarrow d(a b)>d(a)$

UNIT - II

Q. 4 If M_{1} and M_{2} are two sub modules of an R - module M , then $\mathrm{M}_{1} \cap \mathrm{M}_{2}$ is also a sub module of M .
Q. 5 If $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$, then show that F is an Epimorphism if and only if $\operatorname{Im}(\mathrm{f})=\mathrm{M}^{\prime}$.

UNIT - III

Q. 6 If M is generated by $A=\left\{a_{1}, a_{2}, \ldots . ., a_{n}\right\}$ and A is L.I., then $M=A_{1} \oplus A_{2} \oplus \ldots \oplus A n$, where A_{i} is a cyclic sub module generated by a_{i}.
Q. 7 Show that any finite abelian group is the direct product of cyclic groups.

UNIT - IV

Q. 8 Let K be a field extension of a field. Show that an element a is algebraic over F iff $\mathrm{F}(\mathrm{a})$ is a finite extension of F .
Q. 9 Prove that decomposition fields are algebraic extension.

UNIT -V
Q. 10 Let K be an extension of a field F, then the set $G(K, F)$ of all automorphisms of K which leave every elements of F fixed is a subgroup of the group $A(K)$ of all automorphisms of K.
Q. 11 The multiplicative group of a Galois field or finite field is cyclic.

PART - C

Q. 12 If a is non-zero non unit element of Euclidean ring R such that $\mathrm{a}=\mathrm{p}_{1} \mathrm{p}_{2} \ldots . . \mathrm{p}_{\mathrm{m}}=\mathrm{q}_{1} \mathrm{q}_{2}$ $\ldots . q_{n}$ where each p_{i} and q_{i} is prime element of R. Then show that $m=n$ and p_{i} is an associate of some q_{i} and each q_{i} is an associate of some p_{i}.
Q. 13 Let M be an R - module and A be any sub-module of M . let $\mathrm{t}: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ be a linear transformation on R - module M to M^{\prime} and $P: M \rightarrow \frac{M}{A}$ be a natural morphism. If the Kernel of t contain A, then \exists a unique R - linear transformation $t^{\prime}: \frac{M}{A} \rightarrow M^{\prime}$ such that $\mathrm{t}^{\prime} \mathrm{op} \equiv \mathrm{t}$.
Q. 14 Let R be a Euclidean Ring, then any finitely generated R - module, M is the direct sum of a finite number of cyclic modules.
Q. 15 A polynomial of degree n over a field can have at most n roots in any extension field.
Q. 16 If K is normal extension of field of F of characteristic O . then \exists a one - to - one correspondence between the set of subfield of K which contain F and the set of subgroup of $G(K, F)$.

