Total Pages: 04

Roll No. ....

### 7224

# M.Sc. II<sup>nd</sup> SEMESTER EXAMINATION, 2019 MATHEMATICS

Paper – IV<sup>th</sup>

### **Mechanics - II**

Time: Three Hours Maximum Marks: 80

**PART – A** (खण्ड – अ) [Marks: 20]

Answer all questions (**50** words each). All questions carry equal marks. सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर **50** शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

**PART – B (खण्ड – ब)** [Marks: 40]

Answer five questions (250 words each),

selecting one from each unit. All questions carry equal marks.

प्रत्येक इकाई से एक-एक प्रश्न चूनते हुए, कुल पाँच प्रश्न कीजिए।

प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

[Marks: 20]

Answer any two questions (300 words each).

PART – C (खण्ड – स)

All questions carry equal marks. कोई **दो प्रश्न** कीजिए। प्रत्येक प्रश्न का उत्तर **300** शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

### PART – A

Q.1 Answer all questions -

- (i) Write product of inertia of an elliptic quadrantal disc with respect to its axes.
- (ii) Define 'Radius of gyration'.
- (iii) What is principle of Angular Momentum?
- (iv) State D'Alembert's principle.
- (v) What is rolling and sliding friction?
- (vi) Write Kinetic Energy of a rigid body in a two-dimensional motion.
- (vii) Define conservative forces.
- (viii) What is principle of conservation of linear momentum?
- (ix) What is Lagrangian Function?
- (x) What do you mean by conservative or non-conservative dynamical systems?

## <u>PART – B</u>

#### <u>UNIT – I</u>

- Q.2 Find the product of inertia of a semi-circular wire about its diameter and tangent at its extremity.
- Q.3 Prove that the momental ellipsoid of a point on the rim of a hemisphere is

 $2x^2 + 7(y^2 + z^2) - \frac{15}{4}xz = \text{constant.}$ 

#### <u>UNIT – II</u>

- Q.4 A solid homogeneous cone, of height h and vertical angle  $2\alpha$ , oscillates about a horizontal axis through its vertex. Show that the length of the simple equivalent pendulum is  $\frac{h}{5}$  (4 + tan<sup>2</sup> $\alpha$ ).
- Q.5 A rod, of length 2a revolves with uniform angular velocity to about a vertical axis through a smooth joint at one extremity of the rod so that it describes a cone of semi-vertical angle  $\alpha$ , we have  $\omega^2 = 3g/(4a \cos \alpha)$ . Prove that direction of reaction at the hinge makes with the vertical an angle  $\tan^{-1}\left[\left(\frac{3}{4}\right)\tan\alpha\right]$ .

#### <u>UNIT – III</u>

- Q.6 A uniform solid cylinder is placed with its axis horizontal on a plane, whose inclination to the horizon is  $\alpha$ . Show that the least coefficient of the friction between it & (and) the plane, so that it may roll and not slide, is  $\left(\frac{1}{3}\right)$  tan  $\alpha$ .
- Q.7 Two equal uniform rods, AB & AC are freely jointed at A, and are placed on a smooth table so as to be a right angles. The rod AC is struck by a blow at C in a direction perpendicular to itself, show that the resulting velocities of the middle points of AB and AC are in the ratio 2 : 7.

#### <u>UNIT – IV</u>

- Q.8 A uniform rod, of length 2a, is placed with one end in contact with a smooth horizontal table and is then allowed to fall; if  $\alpha$  be its initial inclination to the vertical, show that its angular velocity, when it is inclined at an angle  $\theta$ , is  $\left\{\frac{6g}{a}, \frac{\cos \alpha \cos \theta}{1 + 3 \sin^2 \theta}\right\}^{\frac{1}{2}}$
- Q.9 A circular ring of mass M and radius a, lies on a smooth horizontal plane, and an insect of mass m, resting on it starts and walks round it with uniform velocity v relative to the ring. Show that the centre of the ring describes a circle with angular velocity.

$$\omega = \frac{v}{a} \cdot \frac{m}{M + 2m}$$

#### <u>UNIT –V</u>

- Q.10 When the lagrangian function has the form  $L = \dot{q}_k q_k \sqrt{1 \dot{q}_k}$ , show that the generalized acceleration is zero?
- Q.11 A heavy uniform rod of mass m and length 2a rotating in a vertical plane falls and strikes a smooth inelastic horizontal plane. If u &  $\omega$  be its linear and angular velocities and  $\theta$ be the inclination of the rod to the vertical just before the impact, Prove that the impulse J is given by  $(1 + 3\sin^2\theta) J = m (u + a \omega \sin\theta)$ .
- [7224] Page **3** of **4**

## PART – C

Q.12 Find the moment of inertia of the area of lemniscate  $r^2 = a^2 \cos 2\theta$ .

- (i) about its axis.
- (ii) about a line through the origin & perpendicular to its plane.
- Q.13 A rod, of length 2a is suspended by a string of length l, attached to one end, if the string and rod revolve about the vertical with uniform angular velocity & their inclinations to the vertical be  $\theta$  and  $\phi$  respectively, show that-

 $3\ell (\tan \phi - \tan \theta) \sin \theta = (4 \tan \theta - 3 \tan \phi) a \sin \phi$ 

- Q.14 An imperfectly rough sphere moves from rest down a plane inclined at an angle  $\alpha$  to the horizon; discuss the motion.
- Q.15 An elliptic lamina is rotating about its centre on a smooth horizontal plane. If  $\omega_1$ ,  $\omega_2$ ,  $\omega_3$  be its angular velocities when the extremity of its major axis, its focus and the extremity of its minor axis respectively become fixed; prove that  $\frac{7}{\omega_1} = \frac{6}{\omega_2} + \frac{5}{\omega_3}$ .
- Q.16 A perfectly rough sphere lying inside a hollow cylinder, which rests on a perfectly rough plane, is slightly displaced from its position of equilibrium. Show that the time of a small

oscillation is  $2\pi \sqrt{\left(\frac{a-b}{g} \cdot \frac{14 \text{ M}}{10 \text{ M}+7\text{m}}\right)}$ 

where a is the radius of the cylinder, b that of the sphere, and M, m are the masses of the cylinder and sphere respectively.

-----