Roll No.

Total Pages: 04

7225

M.Sc. IInd Semester EXAMINATION, 2018

MATHEMATICS

Paper – V

(Differential Geometry-II)

Time: Three Hours Maximum Marks: 80

PART – A (खण्ड – अ) [Marks: 20]

Answer all questions (**50** words each). All questions carry equal marks. सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर **50** शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

PART – B (खण्ड – ब) [Marks: 40]

Answer five questions (**250** words each). Selecting **one** from each unit. All questions carry equal marks. प्रत्येक इकाई से **एक–एक** प्रश्न चुनते हुए, कुल **पाँच** प्रश्न कीजिए।

प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

PART – C (खण्ड – स) [Marks: 20]

Answer any **two** questions (**300** words each). All questions carry equal marks. कोई **दो** प्रश्न कीजिए | प्रत्येक प्रश्न का उत्तर 3**00** शब्दों से अधिक न हो | सभी प्रश्नों के अंक समान हैं |

<u>PART – A</u>

- 1. Solve all questions:
 - (i) Define tangent line to a curve.
 - (ii) Write serret frenet formulas.
 - (iii) Define a osculating sphere.
 - (iv) Define edge of regression of a system of surface.
 - (v) Define a developable surface and write the condition that the surface $x = az + \alpha$, $y = bz + \beta$ to be developable.
 - (vi) Write the formula for curvature of normal section in terms of fundamental magnitude.
 - (vii) Write the expression for radius of curvature of a given section through any point of the surface z = f(x, y).
 - (viii) Write the determinant form of the differential equation to the projection of two lines of curvature.
 - (ix) Write the differential equation to find Principal radii of the surface.
 - (x) Define linear element of a surface.

<u> PART – B</u>

<u>UNIT –I</u>

2. Find the lines that have four point contact at (0, 0, 1) with the surface. $x^4 + 3xyz + x^2 - y^2 - z^2 + 2yz - 3xy - 2y + 2z = 1$.

<u>OR</u>

3. Find the radius of curvature and torsion of the helix $x = a \cos \theta$, $y = a \sin \theta$, $z = a\theta \tan \alpha$.

<u>UNIT –II</u>

4. If the tangent to a curve makes a constant angle α with a fixed line then prove $\sigma = \pm \rho \tan \alpha$.

<u>OR</u>

5. Find the envelope of the plane

 $\frac{x}{a}\cos\theta \sin\psi + \frac{y}{b}\sin\theta \sin\psi + \frac{z}{c}\cos\psi = 1$

[7225]

<u>UNIT –III</u>

6. Find the equation to the developable surface which has the following curve for their edge of regression x = 6t, $y = 3t^2$, $z = 2t^3$.

<u>OR</u>

7. Find the curvature of the normal section of the hellicoid $x = u \cos \theta$, $y = u \sin \theta$, $z = f(u) + c\theta$

<u>UNIT –IV</u>

8. For the hyperbolic paraboloid $2x = 7x^2 + 6xy - y^2$. Prove that the principal radii at the origion $\frac{1}{8}$ and $\frac{-1}{2}$ and Principal sections are x = 3y, 3x = -y.

<u>OR</u>

9. If ℓ_1, m_1, n_1 are direction cosines of the tangent to the line of curvature and ℓ , m, n are direction cosines of the normal to the surface at the point then prove $\frac{d\ell}{\ell_1} = \frac{dm}{m_1} = \frac{dy}{n_1}$.

<u>UNIT –V</u>

10. Find the vertices of the ellipsoid
$$\frac{x^2}{a^2} = \frac{y^2}{b^2} = \frac{z^2}{c^2} = 1$$
.

<u>OR</u>

11. For the surface $\frac{x}{a} = \frac{u+v}{2}$, $\frac{y}{b} = \frac{u+v}{2}$, $z = \frac{uv}{2}$. Prove that the principal radii are given by $a^2 b^2 \rho^2 + \lambda a b \rho (a^2 - b^2 + u v) - \lambda^4 = 0$ where $4\lambda^2 = 4a^2b^2 + a^2(u-v)^2 + b^2(u+v)^2$

PART – C

- 12. Prove that the points of the curve of intersection of the sphere and conicoid rx² + ry² + rz² = 1, ax² + by² + cz² = 1 at which the osculating plane pass through the origin lies on the cone a -r/b-c x⁴ + b-r/c-a y⁴ + c-r/a-b z⁴ = 0
 12. Find the envelope of the plane 2xt² = 2xt + z = t³ and show that its adapted for proceeding.
- 13. Find the envelope of the plane $3xt^2 3yt + z = t^3$ and show that its edge of regression is the curve of intersection of the surface $y^2 = xz$, xy = z.

[7225]

- 14. Show that the developable which passes through the curves z = 0, $y^2 = 4ax$; x = 0, $y^2 = 4bz$ is the cylinder $y^2 = 4ax + 4bz$.
- 15. For the surface $x = u \cos \theta$, $y = u \sin \theta$, $z = f(\theta)$ prove that the angles that the lines of curvature make with the angle are given by

$$\tan^2 \alpha + \frac{f''}{f'} \frac{u}{\sqrt{u^2 + f^{12}}} \tan \alpha - 1 = 0$$
 Where dash denote differentiate wr to θ .

16. Prove that for the surface $x = 3u (1 + v^2) - u^3$, $y = 3u (1 + u^2) - u^3$, $z = 3(u^2 - v^2)$, the principal radii at any point are $\pm \frac{3}{2}(1 + u^2 + v^2)^2$ and the lines of curvature are given by $u = c_1$, $v = c_2$ where c_1 and c_2 are arbitrary constants.