8221

M.Sc. MATHEMATICS III ${ }^{\text {rd }}$ SEMESTER
 EXAMINATION, 2019
 Paper - I
 Numerical Analysis-I

Time: Three Hours
Maximum Marks: 80
PART-A (खण्ड - अ)
[Marks: 20]
Answer all questions (50 words each).
All questions carry equal marks.
सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART - B (खण्ड - ब)

Answer five questions (250 words each).
Selecting one from each unit. All questions carry equal marks.
प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।
प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART-C (खण्ड - स)
[Marks: 20]
Answer any two questions (300 words each).
All questions carry equal marks.
कोई दो प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।

PART - A

Q. 1 (i) Define rate of convergence of an iterative method.
(ii) Define simple root of $f(x)=0$ with an example.
(iii) Determine an interval of length one unit in which the negative real root, which is smallest in magnitude lies for the equation $9 x^{3}+18 x^{2}-37 x-70=0$.
(iv) Which iterative method has quadratic rate of convergence?
(v) Write iterative formula of Birge-Vieta method for the polynomial equation $\mathrm{P}_{\mathrm{n}}(\mathrm{x})=0$
(vi) Define system of simultaneous linear equations.
(vii) Which method is better in Jacobi and Gauss-Seidal iterative methods for solving simultaneous linear equations? Give justification.
(viii) Can we use partial pivoting in Gauss-Jordan method?
(ix) When do we use the power method?
(x) Define eigen value and eigen vector of a matrix A.

PART - B

UNIT -I

Q. 2 The multiple root ξ of multiplicity two of a equation $f(x)=0$ is to be determined. We consider the multipoint method-

$$
\mathrm{x}_{\mathrm{k}+1}=\mathrm{x}_{\mathrm{k}}-\frac{\mathrm{f}\left[\mathrm{x}_{\mathrm{k}}+\frac{2 \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{k}}\right)}\right]}{2 \mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{k}}\right)}
$$

Show that the iteration method has third order rate of convergence.
Q. 3 Write the short note on complex roots.

UNIT -II

Q. 4 Find the interval in which the smallest positive root of the following equation lies-

$$
x^{3}-x-4=0
$$

Determine the root correct to two decimal places using the bisection method.
Q. 5 Determine the initial approximation of equation

$$
x^{4}-x-10=0
$$

for finding the smallest positive root. Use this to find the root correct to three decimal places with the Newton-Raphson method.

UNIT -III

Q. 6 Using Bairstow's method obtain the quadratic factor of the following equation (perform two iterations)

$$
x^{4}-3 x^{3}+20 x^{2}+44 x+54=0 \quad \text { with }(p, q)=(2,2)
$$

Q. 7 Use the Birge-Vieta method to find a real root correct to three decimals of the following equation:

$$
\begin{aligned}
& x^{3}-11 x^{2}+32 x-22=0, \quad p=0.5 \\
& \text { UNIT -IV }
\end{aligned}
$$

Q. 8 Find the inverse of the matrix-

$$
\left[\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 1 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

by the Cholesky method.
Q. 9 Determine the inverse of the matrix-
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3\end{array}\right]$

Using the partition method and hence find the solution of the system of equations-

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& 4 x_{1}+3 x_{2}-x_{3}=6 \\
& 3 x_{1}+5 x_{2}+3 x_{3}=4
\end{aligned}
$$

UNIT -V

Q. 10 List out the basic properties of eigen values and eigen vectors of a matrix.
Q. 11 Find the largest eigen value of a matrix-

$$
A=\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 2
\end{array}\right]
$$

Using power method.

PART - C

Q. 12 Find the rate of convergence of Secant method.
Q. 13 Solve the following system of equations-

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=2 \\
& 2 x_{1}+3 x_{2}+5 x_{3}=-3 \\
& 3 x_{1}+2 x_{2}-3 x_{3}=6
\end{aligned}
$$

Using by Gauss-elimination method with partial pivoting.
Q. 14 Solve the system of equations-

$$
\begin{aligned}
& 4 x_{1}+2 x_{2}+x_{3}=4 \\
& x_{1}+3 x_{2}+x_{3}=4 \\
& 3 x_{1}+2 x_{2}+6 x_{3}=7
\end{aligned}
$$

Using the Gauss-Seidal method upto three iterations using the initial approximation, $\mathrm{x}^{(0)}=[0.1,0.8,0.5]^{\mathrm{T}}$.
Q. 15 Determine the largest eigen value and the corresponding eigen vector of the matrix-

$$
A=\left[\begin{array}{ccc}
4 & 1 & 0 \\
1 & 20 & 1 \\
0 & 1 & 4
\end{array}\right]
$$

to three correct decimal places using the power method.
Q. 16 What is the disadvantage of the Regula-Falsi method? Also, find the smallest positive root of $x^{4}-x-10=0$, correct to three decimal places.

