Roll No. Total Pages: 04

8223

M.Sc. MATHEMATICS IIIrd SEMESTER EXAMINATION, 2019 Paper - III DISCRETE MATHEMATICS-I

Time: Three Hours
Maximum Marks: 80

PART – A (खण्ड – अ)

[Marks: 20]

Answer all questions (50 words each).

All questions carry equal marks.

सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

PART - B (खण्ड - ब)

[Marks: 40]

Answer five questions (250 words each).

Selecting one from each unit. All questions carry equal marks.

प्रत्येक इकाई से **एक-एक** प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

PART - C (खण्ड - स)

[Marks: 20]

Answer any two questions (300 words each).

All questions carry equal marks.

कोई **दो प्रश्न** कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

[8223]

PART - A

- Q.1 (i) Define the statement, give one example.
 - (ii) Define Monoids.
 - (iii) Define Semi-homomorphism.
 - (iv) Define direct product.
 - (v) Define Lattice.
 - (vi) Define Homomorphism.
 - (vii) Define Boolean Lattice.
 - (viii) Define Idempotent law in Boolean algebra.
 - (ix) Define Conjunctive Normal Form.
 - (x) Explain "AND" gate.

PART – B

UNIT -I

- Q.2 Prove that following preposition are tautologies.
 - (i) $p \lor \sim p$
 - (ii) $-(p \wedge q) \vee q$
 - (iii) $p \Rightarrow (p \lor q)$
- Q.3 A semi group (S, *) is a group IFF for $a, b \in S$ each of the equations a * x = b and y * a = b has a solution in S for x and y.

UNIT -II

- Q.4 Prove that a Semi group has at most one absorbing element.
- Q.5 Show that \exists a semi group homomorphism from semi group (N, +) of natural number under addition to the semi group $\{(0,1,2,3), +_4\}$, where $+_4$ denotes the operation of addition modulo 4 on the set (0, 1, 2, 3).

[8223]

UNIT –III

Q.6 Let (L, \leq) be a Lattice, then for a, b, c, $d \in L$. Prove that :

- (i) $a \le b \Rightarrow a \lor c \le b \lor c$
- (ii) $a \le b$ and $c \le d \Rightarrow a \lor c \le c \lor d$
- Q.7 Show the Lattice (L^3, \leq) of 3-tuples of 0 and 1 is complemented.

UNIT -IV

Q.8 Prove that –

- (i) (a + b)' = a'.b' (ii) (a. b)' = a' + b'
- Q.9 Express the Boolean function f(x, y, z) = x + y'z in a sum of minterm.

UNIT -V

Q.10 Find the logic Networks corresponding to Boolean expression.

- (i) AB + CD
- (ii) X'Y'Z+X'YZ+XY'
- Q.11 Prove the Boolean Identify –

$$A \oplus B \oplus A.B = A + B$$

PART - C

Q.12 Construct the truth table for-

- (i) $p \lor \sim q = p$
- (ii) $(\sim (p \land q) \lor r) = \sim p$
- Q.13 Let (S, *), (V, 0) be semi group $f: S \to T$ and $g: T \to V$ be a semi group homomorphism.

Then prove that gof: $S \to V$ is a semi group homomorphism from (S, *) to (V,0).

[8223]

- Q.14 Show that the dual of a Complemented Lattice is also Complemented Lattice.
- Q.15 Prove that in any Boolean algebra order relation ≤ is partial order relation.
- Q.16 Find Karnaugh map and simplify the expressions:
 - (i) AB' + A'B'
 - (ii) AB' + A'B
 - (iii) AB' + A'B + A'B'

[8223] Page **4** of **4**