Roll No.

Total Pages: 07

8224

M.Sc. MATHEMATICS IIIrd SEMESTER EXAMINATION, 2019 Paper - IV **Optimization Techniques-I**

Time: Three Hours Maximum Marks: 80

PART – A (खण्ड – अ) [Marks: 20]

Answer all questions (50 words each). All questions carry equal marks. सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

PART – B (खण्ड – ब) [Marks: 40]

Answer five questions (250 words each). Selecting one from each unit. All questions carry equal marks. प्रत्येक इकाई से **एक–एक** प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

PART – C (खण्ड – स) [Marks: 20]

Answer any two questions (300 words each). All questions carry equal marks. कोई **दो प्रश्न** कीजिए | प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो | सभी प्रश्नों के अंक समान हैं |

PART – A

- Q.1 (i) Write advantage of Dual Simplex Method over simplex method.
 - (ii) What do you mean by bounded value LPP?
 - (iii) Discuss sensitivity analysis with respect to changes in the coefficients $a_{ij} \notin B$, where a_{ij} is the coefficients of non-basic variables.
 - (iv) Define Post-optimality analysis.
 - (v) Explain addition of the new variable to a given L.P.P.
 - (vi) Explain Effect of deletion of a constraint from a given L.P.P.
 - (vii) Define integer programming problems.
 - (viii) Explain Fractional cut and λ -cut.
 - (ix) Write applications of PERT/CPM techniques.
 - (x) Explain Total float.

<u> PART – B</u>

<u>UNIT –I</u>

Q.2 Solve the following problem by dual simplex method:

Min z = $2x_1 + x_2$, subject to $3x_1 + x_2 \ge 3$ $4x_1 + 3x_2 \ge 6$ $x_1 + 2x_2 \ge 3$ and $x_1, x_2 \ge 0$

Q.3 Explain Bounded Value Algorithm.

<u>UNIT –II</u>

Q.4 Given the following linear programming problem:

Max z = $3x_1 + 5x_2 + 4x_3$, subject to $2x_1 + 3x_2 \le 8$ $2x_2 + 5x_3 \le 10$ $3x_1 + 2x_2 + 4x_3 \le 15$ and $x_1, x_2, x_3 \ge 0$

Find the range over which b_2 can be changed maintaining the feasibility of the solution.

Q.5 Given the L.P.P.-

Max $z = 3x_1 + 5x_2$ subject to $3x_1 + 2x_2 \le 18$ $x_1 \le 4$ $x_2 \le 6$ and $x_1, x_2 \ge 0$

Determine optimum solution to the L.P.P and discuss the Effect on the optimality of the solution when the objective function is change to $z = 3x_1 + x_2$.

<u>UNIT –III</u>

- Q.6 Discuss sensitivity analysis with respect to addition of new constraints.
- Q.7 Let the optimum simplex table for a maximization problem (with all constraints of '≤' type) be-

		Cj	5	12	4	0	-M
Basic variable	C _B	X _B	X 1	X 2	X3	X 4	A ₁
X2	12	8 5	0	1	$\frac{-1}{5}$	$\frac{2}{5}$	$\frac{-1}{5}$
X 1	5	9 5	1	0	7 5	$\frac{1}{5}$	$\frac{2}{5}$
$z = 14\frac{1}{5}$			0	0	$\frac{3}{5}$	$\frac{29}{5}$	$M\frac{-2}{5}$

where x_4 is slack and a_1 an artificial variable. Let a new variable $x_5 \ge 0$ be introduced in the problem with a cost 30 assigned to it in the objective function. Also given that the coefficients of x_5 in the two constraints are 5 and 7 respectively.

Discuss the Effect of this addition of a variable on the optimality of the optimum solution to the given problem.

UNIT –IV

- Q.8 Explain and write the steps of Branch and Bound algorithm for integer programming problem.
- Q.9 Solve the following I.P.P. by Gomory's Method-

Max z = $2x_1 + 20x_2 - 10x_3$ subject to $2x_1 + 20x_2 + 4x_3 \le 15$ $6x_1 + 20x_2 + 4x_3 = 20$

and

 $x_1, x_2, x_3 \ge 0$ and are all integers.

<u>UNIT –V</u>

Q.10 A project consist of a series or tasks labelled A, B..... H, I with the following relationships (W < X, Y means X & Y cannot start until W is completed; X, Y < W means W cannot start until both X & Y are completed). With this notation, construct the network diagram having the following constraints:

A < D, E; B, D < F; C < G; G < H; F, G < I

Find also the optimum time of completion of the project, when the time (in days) of completion of each task is as follows:

Task :	А	В	С	D	Е	F	G	Н	Ι
Time :	23	8	20	16	24	18	19	4	10

Q.11 Explain the following terms in project evaluation and review technique:

- (a) Pessimistic time
- (b) Optimistic time
- (c) Most likely time
- (d) Expected time
- (e) Variance

<u>PART – C</u>

Q.12 Considered the parametric LPP-

Max z = $(3 - 6\lambda)x_1 + (2 - 2\lambda)x_2 + (5 + 5\lambda)x_3$ subject to $x_1 + 2x_2 + x_3 \le 430$ $3x_1 + 2x_3 \le 460$ $x_1 + 4x_2 \le 420$ and $x_1, x_2, x_3 \ge 0$

Perform the parametric analysis and identify all the critical values of the parameter λ .

Q.13 Given the L.P.P.-

Max z =
$$3x_1 + 4x_2 + x_3 + 7x_4$$

subject to $8x_1 + 3x_2 + 4x_3 + x_4 \le 7$
 $2x_1 + 6x_2 + x_3 + 5x_4 \le 3$
 $x_1 + 4x_2 + 5x_3 + 2x_4 \le 8$
and $x_1, x_2, x_3, x_4 \ge 0$

Find the optimal solution of the L.P.P and compute the limit for a_{24} so that the new solution remains optimal feasible solution.

Q.14 Consider the L.P.P.-

 $Max \ z = x_1 + 2x_2$

subject to $-x_1 + x_2 \le 1$ ------(1)

 $x_1 + x_2 \le 2$ ----- (2)

and $x_1, x_2 \ge 0$

(a) Find the optimal solution.

(b) Discuss the effect of deletion of constraint (1) on the optimality of solution.

Q.15 Use Branch and Bound technique to solve the following problem-

Max z = $3x_1 + 3x_2 + 13x_3$

subject to $-3x_1 + 6x_2 + 7x_3 \le 8$

$$6x_1 + (-3x_2) + 7x_3 \le 8$$

$$0 \le x_j \le 5$$

and x_j are integers for j = 1, 2, 3.

Job	Normal time (in days)	Cost (₹)	Crash time (in days)	Crash cost (₹)
(1-2)	6	1400	4	1900
(1-3)	8	2000	5	2800
(2-3)	4	1100	2	1500
(2-4)	3	800	2	1400
(3-4)	Dummy	-	-	-
(3-5)	6	900	3	1600
(4-6)	10	2,500	6	3500
(5-6)	3	500	2	800

Q.16 The following table shows their normal time and cost, crash time and cost for a project-

Indirect cost for the project is ₹ 300 per day.

- (i) Draw the network of the project.
- (ii) What is normal duration cost of the project?
- (iii) If all activities are crashed, what will be the project duration and corresponding cost?
- (iv) Find the optimum duration and minimum project cost.
