8228

M.SC. (MATHEMATICS) IIIrd SEMESTER EXAMINATION, 2019 Paper – VIII Topology

Time: Three Hours Maximum Marks: 80

PART - A (खण्ड - अ)

[Marks: 20]

Answer all questions (50 words each).

All questions carry equal marks.

सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

PART - B (खण्ड - ब)

[Marks: 40]

Answer five questions (250 words each).

Selecting one from each unit. All questions carry equal marks.

प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।

प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

PART - C (खण्ड − स)

[Marks: 20]

Answer any two questions (300 words each).

All questions carry equal marks.

कोई **दो प्रश्न** कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

$\underline{PART - A}$

Q.1	(1)	Define Metric.
	(ii)	Define open and closed set.
	(iii)	Define base for a Topology.
	(iv)	What is First Countable?
	(v)	What is regular space?
	(vi)	Define Compact space.
	(vii)	Define Components of a space.
	(viii)	What is Locally Connected space?
	(ix)	Write statement of Stone – WEIERSTRASS theorem.
	(x)	Write statement of the Complex Stone – WEIERSTRASS theorem.
PART – B		
<u>UNIT –I</u>		
Q.2	Prov	e that the Inter section of a finite collection open set is open.
Q.3	Let f	be a function from metric space X into a Metric space Y. Prove that f is continuous

if and only if $f^{-1}(G)$ is open in X. Whenever G is open in Y.

<u>UNIT –II</u>

- Q.4 A be subset of a topological space X, A' denote the set of all limit points of X, then with usual notation. Prove that- $\overline{A} = A \cup A'$.
- Q.5 If X, Y, Z be topological space. If $f: X \to Y$ and $g: Y \to Z$ are continuous, then prove that $gof: X \to Z$ is also continuous.

<u>UNIT -III</u>

- Q.6 Prove that every metric space in a Hausdorff space.
- Q.7 Prove that every subspace of regular is regular.

<u>UNIT -IV</u>

- Q.8 Prove that a subset of Real Line R is connected Iff, If it is an Interval. The space R is connected space.
- Q.9 The component's of a totally disconnected space are it's point.

UNIT -V

Q.10 If f be a continuous real function defined in a closed interval [a, b], and let $\in >0$ is given.

Prove that \exists a polynomial p with real coefficients such that

$$|f(x) - p(x)| < \in \forall x \in [a, b].$$

Q.11 State and prove the real stone Weierstrass theorem.

[8228] Page **3** of **4**

$\underline{PART - C}$

- Q.12 Prove that limit of a convergent sequence in a metric space is Unique.
- Q.13 If f: X Y be a bijection, then prove that the following properties of f are equivalent:
 - (a) f is homorphism.
 - (b) f is continuous and open.
 - (c) f is continuous and closed.
 - (d) $f(\overline{A}) = \overline{f(A)}$ for each $A \subset X$.
- Q.14 Prove that every closed and bounded subset of R is compact.
- Q.15 Prove that the finite product of locally connected spaces is locally connected.
- Q.16 Prove that c [a, b] is a separable.
