8229
 M.SC. (Mathematics) III ${ }^{\text {rd }}$ SEMESTER EXAMINATION, 2019
 Paper - IX
 Tenser Analysis

Time: Three Hours
Maximum Marks: 80
PART - A (खण्ड - अ)

Answer all questions (50 words each).
All questions carry equal marks.
सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART - B (खण्ड - ब)
[Marks: 40]
Answer five questions (250 words each).
Selecting one from each unit. All questions carry equal marks.
प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।
प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।
PART - C (खण्ड - स)

Answer any two questions (300 words each).
All questions carry equal marks.
कोई दो प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

PART - A

Q. 1 (i) Define contravariant tensors of first orders.
(ii) If A_{ij} is a skew symmetric tensor, then show that-

$$
\left(\delta_{\mathrm{j}}^{\mathrm{i}} \delta_{\mathrm{l}}^{\mathrm{k}}+\delta_{\mathrm{l}}^{\mathrm{i}} \delta_{\mathrm{j}}^{\mathrm{k}}\right) \mathrm{A}^{\mathrm{ik}}=0
$$

(iii) Show that-

$$
\frac{\partial \mathrm{g}_{\mathrm{ik}}}{\partial \mathrm{x}^{\mathrm{j}}}=[\mathrm{ij}, \mathrm{k}]+[\mathrm{kj}, \mathrm{i}]
$$

(iv) Find the value of $\frac{\partial A_{k}}{\partial x^{j}}$
(v) Write the Euler's equation for calculus of variation.
(vi) Define Riemannian co-ordinates.
(vii) If $R_{i j k}^{\alpha}$ is cyclic symmetric, then calculate the value of $R_{, i j k}^{\alpha}+\mathrm{R}_{j k i}^{\alpha}+R_{k i j}^{\alpha}$
(viii) Define Ricci-Tensor.
(ix) A potential field is given by $V=3 x^{2} y-y z$, then find the electric field at $\mathrm{P}(2,-1,4)$.
(x) Find the value of graddiv A.

PART - B

UNIT -I

Q. 2 Show that a skew symmetric tensor of rank two has $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$ independent components in V_{N}.
Q. 3 Prove that $A_{i j} B^{i} C^{j}$ is invariant if B^{i} and C^{j} are contravariant vectors and $A_{i j}$ is a covariant tensor.

UNIT -II

Q. 4 If the matrix of a V_{N} is such that $g_{i j}=0$ for $i \neq j$ show that-
(i) $\left\{\begin{array}{ll}\mathrm{i} & \\ \mathrm{j} & \mathrm{k}\end{array}\right\}=0$
(ii) $\left\{\begin{array}{ll}\mathrm{i} & \\ \mathrm{j} & \mathrm{j}\end{array}\right\}=-\frac{1}{2 \mathrm{~g}_{\mathrm{ii}}} \frac{\partial \mathrm{g}_{\mathrm{ji}}}{\partial \mathrm{x}^{\mathrm{i}}}$
(iii) $\left\{\begin{array}{ll}\mathrm{i} & \\ \mathrm{i} & \mathrm{j}\end{array}\right\}=\frac{\partial}{\partial \mathrm{x}^{\mathrm{j}}}\left\{\log \sqrt{\mathrm{g}_{\mathrm{ii}}}\right\}$
(iv) $\left\{\begin{array}{ll}\mathrm{i} & \\ \mathrm{i} & \mathrm{i}\end{array}\right\}=\frac{\partial}{\partial \mathrm{x}^{\mathrm{i}}}\{\log \sqrt{\mathrm{giii}}\}$

Where i, j and k are not equal and the summation convention does not apply.
Q. 5 Prove that-
(i) $\quad g_{i j, k}=0$
(ii) $g_{, k}^{i j}=0$
(iii) $\delta_{j, k}^{i}=0$

UNIT -III

Q. 6 Show that at the pole P_{0} of the geodesic co-ordinate system-

$$
A_{i, j k}=\frac{\partial^{2} A_{i}}{\partial x^{j} \partial x^{k}}-A_{l} \frac{\partial}{\partial x^{k}}\left\{\begin{array}{ll}
l & \\
i & j
\end{array}\right\}
$$

Q. 7 Show that the parallel displacement of a vector taken all around a circle on the surface of a sphere does not lead back to the same vector except when the circle is a great circle that is a geodesic.

UNIT -IV

Q. 8 The necessary and sufficient condition for a space V_{N} to be flat is that the RiemannChristoffel tensor be identically zero i.e. $\mathrm{R}_{, \mathrm{ijk}}^{\alpha}=0$
Q. 9 Prove that $R_{1212}=-G \frac{\partial^{2} G}{\partial u^{2}}$ for the v_{2} whose line element is $d s^{2}=d u^{2}+G^{2} d v^{2}$ where G is a function of u and v.

UNIT -V

Q. 10 State and proof Maxwell's equation in Tensor form.
Q. 11 State and proof Einstein-Maxwell equation in general relativity.

PART - C $/$ खण्ड - स

Q. 12 Statement and proof of quotient law.
Q. 13 If $[i j, k],\left\{\begin{array}{ll}h & \\ i & j\end{array}\right\}$ and $[\overline{i j, k}],\left\{\begin{array}{ll}\bar{h} & \\ i & j\end{array}\right\}$ are Christoffel symbols of first and second kind in co-ordinate system x^{i} and $\overline{\mathrm{X}}^{\mathrm{j}}$, then-
(a) $[\overline{i j, k}],=[u v, w] \frac{\partial \mathrm{x}^{\mathrm{u}}}{\partial \overline{\mathrm{x}}^{\mathrm{i}}} \frac{\partial \mathrm{x}^{v}}{\partial \overline{\mathrm{x}}^{\mathrm{j}}} \frac{\partial \mathrm{x}^{\mathrm{w}}}{\partial \overline{\mathrm{x}}^{\mathrm{k}}}+\mathrm{g}_{\mathrm{uv}} \frac{\partial^{2} \mathrm{x}^{\mathrm{u}}}{\partial \overline{\mathrm{x}}^{\mathrm{i}} \partial \overline{\mathrm{x}}^{\mathrm{j}}} \frac{\partial \mathrm{x}^{\mathrm{v}}}{\partial \overline{\mathrm{x}}^{\mathrm{k}}}$
(b) $\left\{\begin{array}{ll}\mathrm{p} & \\ \mathrm{l} & \mathrm{m}\end{array}\right\}=\left\{\begin{array}{ll}\mathrm{s} & \\ \mathrm{i} & \mathrm{j}\end{array}\right\} \frac{\partial \overline{\mathrm{x}}^{\mathrm{p}}}{\partial \mathrm{x}^{s}} \frac{\partial \mathrm{x}^{\mathrm{i}}}{\partial \overline{\mathrm{x}}^{1}} \frac{\partial \mathrm{x}^{j}}{\partial \overline{\mathrm{x}}^{\mathrm{m}}}+\frac{\partial \overline{\mathrm{x}}^{\mathrm{p}}}{\partial \mathrm{x}^{j}} \frac{\partial^{2} \mathrm{x}^{j}}{\partial \overline{\mathrm{x}}^{1} \partial \overline{\mathrm{x}}^{\mathrm{m}}}$
Q. 14 A necessary and sufficient condition for vector B^{i} of variable magnitude to suffer a parallel displacement along a curve C is that-

$$
B_{, j}^{i} \frac{d x^{j}}{d s}=B^{i} f(s)
$$

Q. 15 If the metric of a two dimensional flat space is $\mathrm{ds}^{2}=\mathrm{f}(\mathrm{r})\left[\left(\mathrm{dx}^{1}\right)^{2}+\left(\mathrm{dx}^{2}\right)^{2}\right]$ Show that $\mathrm{f}(\mathrm{r})=\mathrm{C}(\mathrm{r})^{\mathrm{k}}$ where $\mathrm{r}^{2}=\left(\mathrm{dx}^{1}\right)^{2}+\left(\mathrm{dx}^{2}\right)^{2}$ and C, k are constants.
Q. 16 State and proof Lorentz invariance of Maxwell's equations.

